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Abstract: This article presents the results of a study on the rheological and lubricating
properties of selected alcohol fuels. Methanol, ethanol, and 2-propanol are investigated, for
which density, kinematic, and dynamic viscosity are determined at selected temperatures
in the range of 15–60 ◦C. In addition, the water content of the studied fuels is determined.
Based on the measurements, the coefficient of temperature change for density and the rela-
tive percentage decrease in kinematic viscosity with increasing temperature are calculated.
Subsequently, regression models are built to describe the value of density and viscosity of
the tested liquid alcohol fuels as a function of temperature. Next, the fuels under study are
subjected to the evaluation of antiwear properties using a high-frequency reciprocating rig
(HFRR). For each fuel, the corrected wear scar size WS1.4, which is a measure of lubricity,
the average coefficient of friction, and the relative percentage decrease in oil FILM thickness
during the conduct of the HFRR test under standardized conditions, are determined. The
measurements are carried out at a standardized temperature of 25 ◦C in accordance with
standardized methods for a time equal to 75 min. Due to the low lubricity of the tested
fuels, additional tests are performed at a reduced time equal to 30 min. In this case, all fuels
show a similar WS1.4 value, which ranges from 384 µm for methanol through 422 µm for
2-propanol to 426 µm for ethanol. The wear marks on the samples after the execution of the
test are used to draw additional qualitative conclusions about the lubricating properties of
the tested alcohols. The results obtained are summarized, and possibilities for their use in
further research are provided.

Keywords: alcohol fuel; methanol; ethanol; 2-propanol; lubricity; viscosity; density; HFRR
test; high-frequency reciprocating rig; tribological wear

1. Introduction
In recent years, growing interest has arisen in using alcohol fuels to power internal

combustion engines as an alternative to fossil fuels. The use of alcohol as fuel in engines
has been known for more than a century [1,2]. Today, due to the implementation of climate
agreements, including “Fit for 55”, the use of alcohols as gasoline admixtures [3] and
stand-alone fuels [4] is growing. This is especially true for low-carbon fuels and the use of
bio-based fuels such as biomass or biofuels [5].

Due to the phase-out of lead in all grades of gasoline and the adverse health and
environmental impacts of tert-butyl methyl ether (MTBE), the synthesis of higher alcohols,
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particularly ethanol, from syngas has attracted considerable interest. Low molecular weight
alcohols such as ethanol have replaced other admixtures as octane enhancers in automotive
fuels. Adding alcohols to petroleum products allows the fuel to burn more completely in
the presence of oxygen, which increases combustion efficiency and reduces air pollution.
To best utilize alcohols as alternative fuels, the engine or vehicle can be redesigned, or
one or more admixtures can be added to ethanol or methanol to improve its properties [6].
Alternative fuels such as alcohols are widely used as admixtures in CI engines. Alcohols
have economic advantages in diesel engines compared to conventional diesel fuel and can
be used as an additive in compression ignition engines without any engine modifications [7].
Methanol fuel (CH3OH) is considered one of the optimal fuels for internal combustion
engines [8,9]. In addition, ethanol (C2H5OH) is considered as one of the most important
components of biodiesel fuel and a promising alternative fuel in combustion engines [10–13].
On the other hand, the use of the studied alcohols as promising stand-alone fuels for
industrial and marine internal combustion engines is driven by their low cetane number
and high octane number, making them excellent fuels for spark-ignition engines. At the
same time, these fuels exhibit low autoignition propensity, which significantly limits their
application in compression-ignition engines.

A potential solution to these challenges is the use of dual-fuel engines powered by
alcohol, where the ignition of the alcohol-air mixture is initiated by the autoignition of a
pilot dose of diesel-type fuel. These solutions are currently being intensively developed
by leading global manufacturers of large and high-power internal combustion engines,
including MAN, Wärtsilä, and WinGD. The technological advancements pursued by these
manufacturers mainly focus on methanol, as it is the low-carbon fuel with the fewest carbon
atoms per molecule. Such engines are already commercially available and essentially
represent the only alternative to low-carbon fuels such as LNG/CNG, LPG, or ethylene.

All the fuels mentioned in the previous sentence can be considered transitional fuels;
however, the market will ultimately shift its focus toward carbon-free and low-carbon
fuels. Carbon-free fuels such as hydrogen and ammonia still pose significant challenges
related to proper storage, corrosive effects, and low volumetric energy density. Among
low-carbon fuels, methanol appears to be the most promising option, and it is analyzed in
our publication alongside two other low-carbon fuels. All the fuels examined in this article
present significant challenges concerning their impact on engine component wear. They
were selected and studied within this context. Currently, ethanol and methanol attract
attention mainly due to their presence in the market and their potential to improve safety
and reduce the negative impact of climate change. Methanol and ethanol are considered as
promising oxygen admixtures in reducing CO and NOx emissions [14,15]. In addition, many
esters processed from methanol and ethanol have been used as admixtures blended with
diesel fuel in diesel engines [16–20]. Methanol and ethanol are among the most promising
alternative sources in terms of low emissions and low costs to replace conventional fuels.
They are produced mainly from renewable sources, which makes them more valuable and
makes it easier to meet demand in the event of overconsumption.

Aliphatic alcohols with the shortest hydrocarbon chains with one hydroxyl group
are methanol, ethanol, and propanol. Propanol exists in the form of two isomers: 1- and
2-propanol. The basic characteristics of methanol, ethanol, and 2-propanol (isopropanol,
propan-2-ol), i.e., alcohols used as the fuel in this study, are summarized based on various
sources in Table 1.
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Table 1. Physicochemical properties of the analyzed alcohol fuels [3,21–23].

Parameter
Fuel

Methanol Ethanol 2-Propanol

Density at 20 ◦C (g/cm3) 0.791–0.792 0.805–0.812 0.784–0.787
Kinematic viscosity at 20 ◦C (mm2/s) 0.757 1.333 2.826
Dynamic viscosity at 20 ◦C (mPa·s) 0.599 1.078 2.220

Molar mass (g/mol) 32.040 46.068 60.110
Calorific value at 15.5 ◦C (MJ/kg) 19.90 26.80 31.00

Lower explosive limit in air at atmospheric
pressure (% vol.) 5.5 3.3 2.0

Upper explosive limit in air at atmospheric
pressure (% vol.) 50 19 13

Excess air factor (-) 6.40 9.00 ~10.33
Boiling point at atmospheric pressure (◦C) 64–65 78–79 81–83

Flash point (in a closed crucible) (◦C) 11–12.0 12–18.3 11.7–15
Autoignition temperature (◦C) 455–470 373–425 350–425

Octane number (research) RON (-) 108.7 107.4 112.5
Cetane number CN (-) 5 5–15 ~12

Alcohols have a low cetane number (low self-ignition tendency), so they are unsuitable
as a stand-alone fuel for compression-ignition engines [24]. However, they are used together
with pilot liquid hydrocarbon fuel in dual-fuel compression-ignition engines [25], and due
to their high octane number, they can be used in spark-ignition engines [26]. Recently,
methanol has attained the most popularity as a carbon fuel containing only one carbon
atom [27].

One significant challenge of using alcohols as fuel is their lubricity and corrosive
effects [28,29], which can result in accelerated wear and damage to machinery powered
by such fuel [30]. This also applies to other alcohols used as a stand-alone fuel [31]. In the
case of internal combustion engines, the use of alcohol fuels, among others, is considered
in the context of their components in blends with diesel oils [32], blends with gasoline [33],
or the use of these fuels alone after appropriate treatment with admixtures that improve
lubricity [34,35].

Despite a very rich literature describing studies of blending fuels of different types and
various aspects of the use of alcohol fuels, the authors did not find any cross-discipline arti-
cles that compile the basic rheological and tribological properties of the simplest aliphatic
alcohols, which is the motivation for conducting the experiment, that are summarized in
this article.

Further research will focus on improving the lubrication properties and reducing
corrosion caused by alcohol fuels, which will allow their wider use in combustion engines,
and on optimizing fuel mixtures to increase combustion efficiency and reduce harmful emis-
sions.

2. Materials and Methods
The employed experiment used certified alcohol fuels: methanol p.a. 99.85% (PTH

CHEMLAND Zbigniew Bartczak, Stargard, Poland), ethanol p.a. 96.00% (Honeywell
Specialty Chemicals Seelze GmbH, Seelze, Germany), and 2-propanol p.a. 99.80% (PTH
CHEMLAND Zbigniew Bartczak, Stargard, Poland).

In order to holistically assess the effect of the tested fuels on the wear of engine
components (i.e., precision injector pairs, fuel pumps, and valves) that can seize, selected
rheological and tribological parameters were measured. The procedure adopted in the
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experiment is shown in Figure 1. A summary of the measurement data is provided in
Appendix A.
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Figure 1. Scheme adopted for the experiment.

Considering the hygroscopic nature of alcohols, the water content was measured for
each fuel to best describe the material used in the experiment. This water content testing
was determined using the Karl–Fischer method with an 831 KF Coulometer (Metrohm,
Herisau, Switzerland). The measured water content in the tested fuels is presented in
Table 2.

Table 2. Measured water content of the tested fuels.

Parameter
Fuel

Methanol Ethanol 2-Propanol

Water content (%
m/m) 0.02 5.50 0.13

The rheological properties of alcohols were described using viscosity. Based on the
measured values of kinematic viscosity and density, the dynamic viscosity was calculated.
The reference density measurement of the petroleum products is usually taken at 15 ◦C [36].
The viscosity of petroleum-based fuels and lubricating oils is usually determined at 40 ◦C
and 100 ◦C [37].
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In the present experiment, the density of each fuel was determined at 15 ◦C, 25 ◦C,
40 ◦C, and 60 ◦C, while the kinematic and dynamic viscosities were determined at 25 ◦C,
40 ◦C, and 60 ◦C. The lower value is limited by the capabilities of the measuring apparatus,
while the upper value relates to the proximity to the boiling point for one of the fuels tested,
i.e., methanol, which is 64–65 ◦C. Each measurement of the density and kinematic viscosity
was made twice, and the value that is recorded is the average of the two measurements.
Dynamic viscosity was calculated based on the measured density and kinematic viscosity.
Information about the instruments used and the standards according to which the mea-
surements were made, as well as the accuracy of the measurements, is summarized in
Table 3.

Table 3. Information on the apparatus and methods used to determine the rheological parameters of
the alcohol fuels under study.

Parameter Apparatus Used
Standard of

Measurement
Implementation

Accuracy of
Measurement

Accuracy of the
Temperature Setting

Density

DMA 4500 density analyzer
with an oscillating U-tube

(Anton Paar GmbH,
Graz, Austria)

ISO 12185: 2024 [36] 5 × 10−5 g/cm3 0.02 ◦C

Kinematic viscosity

Cannon-Fenske Opaque
glass capillary viscometer

(Paradise Scientific
Company Ltd., Dhaka,
Bangladesh) and a TV
2000 viscometric bath

(Labovisco bv, Zoetermeer,
The Netherlands)

ISO 3104:2023 [37] 0.1% 0.01 ◦C

In the next step, the variation of density and kinematic viscosity as a function of
temperature was evaluated. For this purpose, the coefficient of temperature change in
density and the relative percentage decrease in kinematic viscosity with increasing temper-
ature were found. Regression models were also built to describe the variation of density,
kinematic viscosity, and dynamic viscosity as a function of temperature. For each model,
the quality of the model fit to the experimental data was evaluated using the coefficient of
determination. A summary of the developed models is provided in Appendix B.

The tribological properties of the tested fuels were determined using the high-
frequency reciprocating rig (HFRR) from which the corrected wear scar WS1.4 (lubric-
ity [38]) was found, as well as the average coefficient of friction and the relative percentage
decrease in oil FILM thickness during the execution of the HFRR test. Considering the high
wear intensity of the samples separated by a layer of test fuels, the measurements were
performed at a test execution temperature of 25 ◦C in accordance with ISO 12156:2023 [39],
ASTM D6079-22 [40]. The ASTM D6079 standard is essentially identical in content to the
other two standards, CEC F-06-96 [41] and ISO 12156:2023. The difference concerns the
testing of low-lubricity fuels, where only the ASTM D6079 standard allows for lubricity
testing at temperatures lower than 60 ◦C. Moreover, CEC F-06-96 is now obsolete [42].
It should be noted that the HFRR apparatus used meets the measurement requirements
in accordance with both ASTM D6079 and ISO 12156:2023 standards. The lubricity tests
were carried out at a standard time τ of 75 min and a shortened test execution time τ of
30 min. In addition to the quantitative evaluation of lubricity and auxiliary indicators, a
qualitative assessment was made on the wear scar produced during each HFRR test. Infor-
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mation on the apparatuses used, and the standards according to which the measurements
of tribological parameters were carried out are summarized in Table 4.

Table 4. Information about the apparatuses and methods used to determine the tribological parame-
ters of the alcohol fuels under study.

Parameter Apparatus Used
Standard of

Measurement
Implementation

Accuracy of
Measurement

Accuracy of the
Temperature Setting

Lubricity

HFRR V1.0.3 tribometer
[43] and HFRR

microscope [44] (PCS
Instruments, London, UK)

ASTM D6079-22 [40] 50 µm 80 µm

Average coefficient
of friction

Cannon-Fenske Opaque
glass capillary viscometer

(Paradise Scientific
Company Ltd., Dhaka,
Bangladesh) and a TV
2000 viscometric bath

(Labovisco bv, Zoetermeer,
The Netherlands)

HFRR V.1.0.3
procedure [43]

Auxiliary
parameter

Not applicable

Auxiliary parameter
Not applicable

Percentage decrease
in oil FILM thickness

HFRR V.1.0.3
procedure [43]

Auxiliary
parameter

Not applicable

Auxiliary parameter
Not applicable

In view of the fact that lubricity is not a fundamental physical quantity, its mea-
surement accuracy is not specified. Instead, the standards include information on the
repeatability and reproducibility of the measurements, which are determined based on
statistical analyses of results obtained in different laboratories for a given set of samples.

3. Results and Discussion
3.1. Rheological Indices

The density of the alcohol fuels tested as a function of their temperature is shown
in Figure 2. The dotted lines show the curves approximating each set of measurements.
Ethanol has the highest density, and 2-propanol has the lowest.

The density ρt (kg/m3) of each of the studied alcohols, likewise for fossil fuels, de-
creases approximately linearly with increasing temperature and can be determined at a
given temperature t (◦C) relative to the reference density ρ15 (kg/m3) of a given liquid at
15 ◦C according to a relationship commonly used in engineering applications, which is
described by the following formula [45]:

ρt = ρ15 − ε(t − 15), (1)

where ε (kg/(m3·◦C)) is the coefficient of temperature change for liquid density.
For the tested alcohols and the temperature difference between 15 ◦C and 60 ◦C, the

coefficient ε can be calculated using the densities at the relevant temperatures, i.e., ρ15

(kg/m3) and ρ60 (kg/m3), according to the following relationship:

ε =
|ρ60 − ρ15|

60 − 15
=

|ρ60 − ρ15|
45

(2)



Energies 2025, 18, 1038 7 of 18
Energies 2025, 18, x FOR PEER REVIEW 7 of 19 
 

 

 

Figure 2. Measured densities of the alcohol fuels under study. 

Table 5. Indicators characterizing the model of temperature change for the density of alcohol fuels 
under study. 

Alcohol Ρ15 (kg/m3) ε (kg/(m3·°C)) R2 (–) 
Methanol 795.96 0.9507 0.9999 
Ethanol 809.59 0.9820 0.9998 

2-Propanol 789.71 0.8907 0.9994 

The kinematic viscosities of the tested fuels are shown in Figure 3. The dotted lines 
indicate the curves approximating the change in kinematic viscosity as a function of tem-
perature. The highest kinematic viscosity is 2-propanol, and the lowest is methanol. With 
increasing viscosity, the thickness of the oil film increases, which may translate into less 
wear for the contacting components separated by a layer of test fluid. 

The kinematic viscosity γt (mm2/s) of a liquid is a function of dynamic density and 
density at a given temperature t (°C), as described by the relationship: 𝛾௧ = 1000 ఎఘ, (3)

where ηt (mPa·s) is the dynamic density of the liquid, and 1000 is the conversion factor of 
the units of measurement. 

The dynamic viscosity of a liquid decreases with increasing temperature according 
to the exponential Arrhenius–Guzman relationship, i.e., 𝜂௧ = 𝐴𝑒ି ∆ಶೃ, (4)

where A is the mass- and molar-volume-dependent characteristic constant for a given liq-
uid, ΔE is the activation energy of viscous flow, RC involves Clapeyron’s gas constant (i.e., 
8.31446261815324 J·mol−1K−1), and T (K) is the absolute temperature (T = t + 273.15). 

Figure 2. Measured densities of the alcohol fuels under study.

The values of the densities of the tested fuels at a reference temperature of 15 ◦C, the
ε coefficient for the measured densities of the tested alcohols, and the R2 coefficient of
determination that describes the fit of the model (1) to the measured data are shown in
Table 5. For all three tested alcohols, the coefficient of determination was R2 > 0.999, so the
model has a very good fit with the data.

Table 5. Indicators characterizing the model of temperature change for the density of alcohol fuels
under study.

Alcohol P15 (kg/m3) ε (kg/(m3·◦C)) R2 (–)

Methanol 795.96 0.9507 0.9999
Ethanol 809.59 0.9820 0.9998

2-Propanol 789.71 0.8907 0.9994

The kinematic viscosities of the tested fuels are shown in Figure 3. The dotted lines
indicate the curves approximating the change in kinematic viscosity as a function of
temperature. The highest kinematic viscosity is 2-propanol, and the lowest is methanol.
With increasing viscosity, the thickness of the oil film increases, which may translate into
less wear for the contacting components separated by a layer of test fluid.

The kinematic viscosity γt (mm2/s) of a liquid is a function of dynamic density and
density at a given temperature t (◦C), as described by the relationship:

γt = 1000
ηt

ρt
, (3)

where ηt (mPa·s) is the dynamic density of the liquid, and 1000 is the conversion factor of
the units of measurement.
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The dynamic viscosity of a liquid decreases with increasing temperature according to
the exponential Arrhenius–Guzman relationship, i.e.,

ηt = Ae−
∆E

RC T , (4)

where A is the mass- and molar-volume-dependent characteristic constant for a given
liquid, ∆E is the activation energy of viscous flow, RC involves Clapeyron’s gas constant
(i.e., 8.31446261815324 J·mol−1K−1), and T (K) is the absolute temperature (T = t + 273.15).

Taking into account the almost linear dependence of the density of the tested fuels
on temperature according to Equation (1), the relationship between kinematic viscosity
and temperature, similar to the case of dynamic viscosity, can be approximated by the
exponential relation (4) in the form of a function described by the following:

γt = a1e−a2t, (5)

where a1 (mm2/s) is the scale factor of the temperature model of kinematic viscosity and a2

(1/◦C) is the shape factor of the temperature model of kinematic viscosity.
The values of the coefficients a1 and a2 for the measured kinematic viscosities of the

tested alcohols, as well as the coefficient of determination R2, which describes the fit of
model (5) to the measured data, are shown in Table 6. For all three tested alcohols, the
coefficient of determination was R2 > 0.998, so the model is again a very good fit.

Dynamic viscosity was calculated using the transformed relation (3) for the tested
fuels. The values of dynamic viscosity as a function of temperature are shown in Figure 4.
The dotted lines indicate the curves approximating each set of measurements.



Energies 2025, 18, 1038 9 of 18

Table 6. Calculated coefficients of the exponential dependence of kinematic viscosity on the tempera-
ture of alcohol fuels under study.

Alcohol a1 (mm2/s) a2 (1/◦C) R2 (–)

Methanol 0.9336 0.011 0.9989
Ethanol 2.6041 0.018 0.9982

2-Propanol 5.0489 0.025 0.9983

Energies 2025, 18, x FOR PEER REVIEW 9 of 19 
 

 

 

Figure 4. Dynamic viscosities of the tested alcohol fuels calculated from measurements. 

As an analog to relation (5), according to Equation (3), the dynamic viscosity as a 
function of temperature can be approximated by an exponential relationship in the form 
of a function described by the following: 𝜂௧ = 𝑏ଵ𝑒ିమ௧, (6)

where b1 (mPa·s) is the scale factor of the temperature model of dynamic viscosity and b2 
(1/°C) is the shape factor of the temperature model of dynamic viscosity. 

The values of the coefficients b1 and b2 for the calculated dynamic viscosities of the 
tested alcohols, as well as the coefficient of determination R2 describing the fit of the model 
(6) to the measured data, are shown in Table 7. For all three tested alcohols, the coefficient 
of determination was R2 > 0.998; again, the model is a very good fit. 

Table 7. Calculated coefficients of the exponential dependence of dynamic viscosity on the temper-
ature of the alcohol fuels under study. 

Alcohol b1 (mPa·s) b2 (1/°C) R2 (–) 
Methanol 0.7575 0.012 0.9992 
Ethanol 2.1469 0.019 0.9984 

2-Propanol 4.0652 0.026 0.9985 

A parameter commonly used to describe the variation of viscosity of petroleum prod-
ucts as a function of temperature is the viscosity index VI [46,47]. In the case of the fuels 
analyzed in the experiment, it is not possible to determine this parameter since it is neces-
sary to know the viscosity of the product at 40 °C and 100 °C in order to determine VI; 
unfortunately, all the tested alcohols have boiling points below 100 °C. To determine the 
temperature variation of viscosity, the modified viscosity-temperature coefficient (VTC), 
presented in the literature [48] and determined from previous studies [49], was used and 

Figure 4. Dynamic viscosities of the tested alcohol fuels calculated from measurements.

As an analog to relation (5), according to Equation (3), the dynamic viscosity as a
function of temperature can be approximated by an exponential relationship in the form of
a function described by the following:

ηt = b1e−b2t, (6)

where b1 (mPa·s) is the scale factor of the temperature model of dynamic viscosity and b2

(1/◦C) is the shape factor of the temperature model of dynamic viscosity.
The values of the coefficients b1 and b2 for the calculated dynamic viscosities of the

tested alcohols, as well as the coefficient of determination R2 describing the fit of the model
(6) to the measured data, are shown in Table 7. For all three tested alcohols, the coefficient
of determination was R2 > 0.998; again, the model is a very good fit.

A parameter commonly used to describe the variation of viscosity of petroleum
products as a function of temperature is the viscosity index VI [46,47]. In the case of the
fuels analyzed in the experiment, it is not possible to determine this parameter since it is
necessary to know the viscosity of the product at 40 ◦C and 100 ◦C in order to determine
VI; unfortunately, all the tested alcohols have boiling points below 100 ◦C. To determine the
temperature variation of viscosity, the modified viscosity-temperature coefficient (VTC),
presented in the literature [48] and determined from previous studies [49], was used and
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adapted for present purposes. In the present experiment, the modified coefficient was
designated VTC25–60 (%) and defined as the relative percentage decrease in kinematic
viscosity (mm2/s) of the tested oil γ25 and γ60 determined at 25 ◦C and 60 ◦C, respectively,
relating to the viscosity at 25 ◦C, as described by the relationship:

VTC25−60 = 100
γ25 − γ60

γ25
(7)

The largest decrease in viscosity with increasing temperature is shown by 2-propanol
and the smallest by methanol. The values of VTC25–60 (%) of the tested alcohols are
summarized in Table 8.

Table 7. Calculated coefficients of the exponential dependence of dynamic viscosity on the tempera-
ture of the alcohol fuels under study.

Alcohol b1 (mPa·s) b2 (1/◦C) R2 (–)

Methanol 0.7575 0.012 0.9992
Ethanol 2.1469 0.019 0.9984

2-Propanol 4.0652 0.026 0.9985

Table 8. Temperature change in the kinematic viscosity of the fuels under study.

Parameter
Fuel

Methanol Ethanol 2-Propanol

VTC25–60 (%) 32.02 46.58 58.88

The tested fuels show similar rheological properties and an analogous nature for the
changes in individual parameters. Due to the highest viscosity and potentially thickest oil
film, the best lubrication conditions will be provided by 2-propanol, followed by ethanol
and, finally, methanol.

3.2. Lubricity and Auxiliary Indicators

The recorded wear traces of the tested alcohol fuels obtained from HFRR tests at 25 ◦C
for the adopted test execution times are shown in Table 9. All the obtained wear traces
are similar in character. The shape of the wear trace is uniform in both directions of the
measurement, making it similar to a circle.

The dominant type of wear takes the form of parallel grooves running the entire
length of the scar, indicating the dominant influence of plastic deformation. For all tested
samples, point-like wear is also evident, which is associated with local micro-cutting, plastic
deformation, and scratching of the sample. Thus, for all the tested fuels, the occurrence of
analogous phenomena in the wear zone can be assumed.

The corrected magnitude of the wear scar of the tested alcohols is shown in Figure 5.
For the standard conditions of the test implementation, according to ASTM D6079-22 at
25 ◦C and 75 min, the largest wear scar (worst lubricity) was shown by methanol, where
the WS1.4 value was 736 µm, followed by ethanol with a WS1.4 value of 590 µm, and the
best lubricity is shown by 2-propanol with a WS1.4 value of 489 µm. It should be noted that
these values correspond to poor antiwear properties.
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Table 9. Recorded wear scars of the sample during the HFRR test of the alcohols under study.

Fuel Test Execution Time τ = 30 min Test Execution Time τ = 75 min

Methanol
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According to the Worldwide Fuel Charter 6th ed. [42] for diesel fuels, the maximum
lubricity value of HFRR at 60 ◦C is 460 µm for fuels cat. 1, 2, and 3 and 400 µm for fuels
cat. 4 and 5. According to the EN 590:2022 standard [50], the maximum lubricity value
of HFRR at 60 ◦C is 460 µm. According to the standard for petroleum distillation marine
fuels ISO 8217:2024 [51], where the maximum permissible value of WS1.4 is 520 µm, which
is supposed to ensure adequate durability of precision vapors in the fuel apparatus, only
2-propanol meets analogous requirements. In the case of methanol and ethanol, the value
of the corrected wear scar exceeds the normative values, assuming that such values would
be obtained at 60 ◦C. The measurements due to the high volatility of the fuels analyzed
were made at the lower temperature of 25 ◦C, which is indicated in ASTM D6079-24 [40] for
fuels of this type. A previous study for diesel fuels shows that the WS1.4 values determined
for tests at 25 ◦C are about twice as low as for measurements made at 60 ◦C [52].

However, the lubricity results obtained are better than the analogous ones obtained
using the HFRR test for many additive-free gasoline fuels [53]. For example, European
conventional gasoline has WS1.4 = 799 µm, CaRFG2 gasoline has WS1.4 = 872 µm, CEC
RF-83-A-91 gasoline has WS1.4 = 711 µm, commercial UK gasoline has WS1.4 = 792 µm,
and Finland City gasoline has WS1.4 = 861 µm [52].

Due to the low lubricity of the tested alcohols, additional measurements were made for
the modified standard conditions, i.e., measurement at the standard temperature of 25 ◦C,
but with a shortened measurement time τ of 30 min. In this case, all fuels show a similar
WS1.4 value, which ranges from 384 µm for methanol through 422 µm for 2-propanol to
426 µm for ethanol. Based on the presented results, it can be concluded that, after a certain
measurement duration is exceeded, the wear increases due to a decrease in the amount of
the test substance separating the contacting samples due to evaporation caused by friction
heating of the samples.

The authors determined the measurement uncertainty values based on the calibration
certificates of the measuring instruments used. A summary of the calculated measurement
uncertainty values for the analyzed parameters is shown in Table 10. The assessment
of measurement uncertainty for secondary and auxiliary quantities was not included
in the mentioned table due to their specific nature. The indicated uncertainties refer to
normative values.

Table 10. Summary of the uncertainties of the obtained measurement results for each parameter.

Parameter Symbol Unit Methanol Ethanol 2-Propanol

Density @ 15 ◦C U(ρ15) kg/m3 0.3509 0.3509 0.3509
Kinematic viscosity @ 40 ◦C U(ν40) mm2/s 0.0148 0.0148 0.0148
Lubricity (HFRR wear scar

diameter) @ 25 ◦C U(WS1.4) µm 37.3 37.3 37.3

The average coefficient of friction of the tested fuels during the execution of the test is
shown in Figure 6. For a standard HFRR test time τ of 75 min, the highest coefficient of
friction equal to 0.369 was obtained for methanol, followed by 0.361 for ethanol, and the
lowest value of 0.290 was found for 2-propanol. With a shortened test time τ of 30 min,
the highest coefficient of 0.411 was obtained for 2-propanol, next 0.377 for ethanol, and the
lowest for methanol at 0.235.
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The average coefficient of friction for the tested alcohols and test execution times is
in the range of 0.235–0.411. The values obtained are close to the values of the average
coefficient of friction during the HFRR test of gasolines at 25 ◦C, where the example
gasolines obtained a coefficient in the range of 0.320–0.530 [52]. The obtained values of the
average coefficient of friction, on the other hand, are much higher than those obtained for
diesel fuels, which, at a measurement temperature of 25 ◦C, are 0.125–0.149, for example,
for the distillation fuels for diesel engines [52].

The value of the percentage decrease in oil film FILM thickness during the execution of
the HFRR test is shown in Figure 7. For both the standard test execution time of 75 min and
the test shortened to 30 min, the highest oil FILM thickness at the end of the test execution
was obtained for methanol, then for 2-propanol, and the highest film thinning was obtained
for ethanol. The very low FILM parameter values of 24% and 32% for methanol and
≤16% for ethanol and 2-propanol indicate a significant reduction in lubricating FILM
thickness and periodic metallic contact of the connected samples during the execution of
the HFRR test.

The FILM parameter values do not correlate with the viscosity values obtained for
individual fuels during previous tests, as shown in Figures 3 and 4, where a lower viscosity
is often paired with lower FILM parameter values. Such a relationship occurs, for example,
for fuel-diluted fresh lubricating oils [54] or fuel-diluted used lubricating oils [55].

In the present experiment for the tested fuels, the mentioned relationship between
FILM thickness and substance viscosity was not observed, which is presumably due to
the fact that the implementation of the HFRR test refers to the evaluation of the ability of
individual fuels to form a boundary layer and the analysis of the boundary friction that
takes place under these conditions. In contrast, viscosity has a direct effect on the separation
of contacting components during the time when the lubricating substance is applied at the
appropriate pressure, that is, during hydrostatic or hydrodynamic lubrication. Then, liquid
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or mixed friction takes place. An additional factor affecting the obtained results is the low
boiling point of the fuels under testing, which results in an accelerated depletion of the
amount of the test substance relative to the petroleum-based fuels during the execution of
the HFRR test.
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4. Conclusions
This study confirmed the low lubricity of the fuels under investigation. Thus, their

use in engines may require the use of mixtures of these fuels with hydrocarbons or the
application of admixtures to improve the lubricity and, thus, reduce the wear intensity of
the components of the tribological pairs lubricated with these fuels.

The lubricity of fuel, and consequently its impact on engine component wear, can
be improved by lowering the fuel temperature in the fuel supply system and by using
chemical additives that enhance fuel lubricity. Indirectly, the negative impact of fuel on the
wear of combustion chamber components, such as cylinder liners, pistons, and piston rings,
can be minimized by selecting a lubricating oil that is appropriately matched to the fuel.
This approach is analogous to the practice used in industrial and marine engines powered
by liquid hydrocarbon fuels with low sulfur content, such as very low sulfur fuels (VLSF)
and ultra-low sulfur fuels (ULSF).

The obtained results relating to the rheological characteristics of the studied alcohols
can be the basis for further analysis. This is especially true for the developed models
of density, kinematic viscosity, and dynamic viscosity, which can be used in subsequent
experiments since they provide a very good match between the calculation results and
empirical data.

The experiment, as expected, showed that the antiwear properties of alcohols are low.
The lubricity is much worse than that of diesel oils, while it is close to that of gasoline. This
makes it necessary to use various admixtures to improve the lubricity of pure alcohol fuels
and fuels that are mixtures of alcohols, alcohols and gasolines, and alcohols and diesel oils.
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The obtained results can be used in further research aimed at optimizing the properties
of fuels enriched with bioalcohols or alcohol-based fuels, which is becoming a much more
important issue for road users who want to reduce their fossil fuel use. Moreover, the
new generation of fuels, in addition to providing adequate ignition and caloric properties,
must also exhibit appropriate characteristics to guarantee the reliability, durability, and
operational safety of the internal combustion engines that these fuels will power.
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Abbreviations

A characteristic constant for a given liquid
a1, a2 coefficients of the equation approximating kinematic viscosity
ASTM American Society for Testing and Materials
b1, b2 coefficients of the equation approximating dynamic viscosity
CN cetane number
∆E activation energy of viscous flow
FILM percentage decrease in film thickness of lubricant during the HFRR test
HFRR high-frequency reciprocating rig
ISO International Organization for Standardization
RC Clapeyron’s gas constant
R2 coefficient of determination
RON research octane number
T absolute temperature expressed in K
t relative temperature expressed in ◦C
U uncertainty
VI viscosity index
VTC viscosity-temperature coefficient
VTC25–60 relative percentage decrease in kinematic viscosity with an increase in temperature
WD1.4 normalized HFRR wear scar diameter
γt kinematic viscosity at temperature t (◦C)
ε coefficient of temperature change for density
µ friction coefficient
ηt dynamic viscosity at temperature t (◦C)
ρ density
ρ15 density at 15 ◦C
ρ60 density at 60 ◦C
ρt density at temperature t (◦C)
τ test execution time
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Appendix A

Table A1. Measurement data.

Parameter Temperature
(◦C)

Time
(min) Unit Methanol Ethanol 2-Propanol

Kinematic
viscosity

25 N/A
mm2/s

0.712 1.681 2.714
40 N/A 0.597 1.256 1.797
60 N/A 0.484 0.898 1.116

Density

15 N/A

kg/m3

795.96 809.59 789.71
25 N/A 786.56 800.96 781.36
40 N/A 772.33 787.73 768.31
60 N/A 753.18 769.45 749.63

Water
content N/A N/A (% m/m) 0.02 5.50 0.13

Lubricity

25 30 µm 384 426 422
Coefficient of friction N/A 0.235 0.377 0.411

FILM parameter % 24 4 7

25 75 µm 736 590 489
Coefficient of friction N/A 0.369 0.361 0.290

FILM parameter % 32 7 16

Appendix B Empirical Models
Appendix B.1 Density ρt(kg/m3) = f [t (◦C)]

Methanol: ρt = 795.96 − 0.9507(t − 15)
Ethanol: ρt = 809.59 − 0.9820 (t − 15)
2-Propanol: ρt = 789.71 − 0.8907 (t − 15)

Appendix B.2 Kinematic Viscosity γt(mm2/s) = f [t (◦C)]

Methanol: γt = 0.9336e−0.011 · t

Ethanol: γt = 2.6041e−0.018 · t

2-Propanol: γt = 5.0489e−0.025 · t

Appendix B.3 Dynamic Viscosity ηt(mPa·s) = f [t (◦C)]

Methanol: ηt = 0.7575e−0.012 · t

Ethanol: ηt = 2.1469e−0.019 · t

2-Propanol: ηt = 4.0652e−0.026 · t
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53. Oleksiak, S.; Stępień, Z. Zagadnienia Smarności Paliw Silnikowych. Lubricity of Engine Liquid Fuels. Czas. Tech. M 2008,

7-M/2008, 251–263.
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